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Abstract

A study into the problem of determining electromagnetic solutions at high frequencies for

problems involving complex geometries, large sizes and multiple sources (e.g. antennas) has been

initiated. Typical applications include the behavior of antennas (and radiators) installed on complex

conducting structures (e.g. ships, aircrafts, etc..) with strong interactions between antennas, the

radiation patterns, and electromagnetic signals is of great interest for electromagnetic compatibility

control. This includes the overall performance evaluation and control of all on-board radiating

systems, electromagnetic interference, and personnel radiation hazards.

Electromagnetic computational capability exists at NASA LaRC, and many of the codes

developed are based on the Moment Method (MM). However, the MM is computationally intensive,

and this places a limit on the size of objects and structures that can be modeled. Here, two approaches

are proposed: (i) a current-based hybrid scheme that combines the MM with Physical optics, and (ii)

an Alternating Direction Implicit-Finite Difference Time Domain (ADI-FDTD) method. The essence

of a hybrid technique is to split the overall scattering surface(s) into two regions: (a) a MM zone

(MMZ) which can be used over any part of the given geometry, but is most essential over irregular

and "non-smooth" geometries, and (b) a PO sub-region (POSR). Currents induced on the scattering

and reflecting surfaces can then be computed in two ways depending on whether the region belonged

to the MMZ or was part of the POSR. For the MMZ, the current calculations proceed in terms of

basis functions with undetermined coefficients (as in the usual MM method), and the answer obtained

by solving a system of linear equations. Over the POSR, conduction is obtained as a superposition of

two contributions: (i) currents due to the incident magnetic field, and (ii) currents produced by the

mutual induction from conduction within the MMZ. This effectively leads to a reduction in the size

of linear equations from N to N - Nvo with N being the total number of segments for the entire

surface and Npo the number of segments over the POSR. The scheme would be appropriate for

relatively large, flat surfaces, and at high frequencies.

The ADI-FDTD scheme provides for both transient and steady state analyses. The restrictive

Courant-Friedrich-Levy (CFL) condition on the time-step is removed, and so large time steps can be

chosen even though the spatial grids are small. This report includes the problem definition, a detailed

discussion of both the numerical techniques, and numerical implementations for simple surface

geometries. Numerical solutions have been derived for a few simple situations.



I. Introduction and Problem Statement:

Research interest at NASA in the general area of electromagnetics arises from a broad range

of potential applications involving detection and remote sensing, system stability with regard to

electromagnetic disturbances/pulses, stochastic variability, and scattering effects in radar systems.

Many of these applications rely on the use of antennas that may be mounted on or placed in close

proximity to suitable platforms (for example, airplanes). It therefore, becomes important to be able to

accurately analyze and predict antenna performance characteristics in the presence of such platforms

and large objects involving complex geometries.

Electromagnetic solutions (including parameters such as impedance and radiation patterns)

can be obtained by either the moment method [1,2], or finite-element analysis [3]. Of these, the

moment method (MM) is more accurate, but computationally intensive as it leads to a dense matrix

that has to solved. The finite element method (FEM) is more attractive since it results in sparse,

banded matrices which can stored and solved more easily. However, the FEM for unbounded

problems does not include the Sommerfield radiation condition, and requires the use of adequate

absorbing boundary conditions to treat the radiation conditions that must be imposed at the

boundaries of discretized region. The MM scheme is accurate but slow and computationally very

intensive, especially as the physical dimensions approach lengths on the order of ten wavelengths.

Moreover, MM is applicable to complex conducting or penetrable bodies, and complicated

geometries. The MM requires the solution of"N" equation, where "N" the number of basis functions

chosen depend on the number of patch-elements (or segments) into which the overall physical system

and structure is decomposed. These "N" equations have to be solved, which typically requires storage

on the order ofN 2 and computation times on the order ofN k , with 2 < k < 3 [4]. In employing basis

functions, the segment length has to be taken to be smaller than h/10, with _ being the operating

wavelength. Obviously, for high-frequency situations, h reduces dramatically, leading to increases in

both the storage and computational requirements which scale as f4 and f2k. Consequently, from a

practical standpoint, the use for the MM technique is restricted to applications involving low

frequencies and/or medium sized scattering bodies. At high frequencies, or for large sized bodies,

the MM becomes computationally intractable.

The problem of determining electromagnetic solutions at high frequencies can be simplified

by incorporating ideas of "optics". An important premise for the optics-based techniques is that at

sufficiently high frequencies the propagation, scattering and diffraction of electromagnetic signals



exhibit highly localizedbehavior. Sucha localizedbehaviorcanqualitativelybedemonstratedby

consideringtheradiationintegraloverthespatialcurrentdistributioninducedonaradiatingobjectby

theprimaryexcitation.At high frequency,the integrandoscillatesrapidly to producedestructive

interference.The dominant contribution arises only from waves that emanate from the local

neighborhood of critical areas that are points of reflection, transmission and diffraction [5]. The

connection between ray optics and Maxwell's equations has also been demonstrated by deriving the

laws of geometric optics from Helrnholtz's scalar wave equation [6,7]. In such a simple ray treatment

based solely on incident, reflected and transmitted beams, no rays can exist in the "shadow

boundaries" beyond the "line-of-sight" visibility regions.

An ideal option would be the use of hybrid schemes that preserve the accuracy without

computational complexity, as suggested by Thiele et al. [8], Burnside and co-workers [9], and

reviewed more recently [10,11 ]. In general, the hybrid scheme can be formulated as a field-based

(FB) or current-based (CB) analysis. In the field-based version [12,13], solutions for the fields

associated with edge or surface diffraction, based on the geometrical theory of diffraction (GTD) or

geometrical optics (GO), could be used as the starting point. These could serve as an Ansatz to the

MM formulation and be a representation for parts of a scatterer not conforming to a canonic

geometry. The FB approach is attractive for problems where the radiator is in proximity to large

convex surfaces for which the canonical GTD solutions are known. These approaches are also known

as "ray-based" schemes provide very fast results, but their application is restricted to problems where

asymptotic high-frequency solutions are available. In these GTD-MM schemes, the form of the

currents induced by straight-edge diffraction or in the shadow regions were derived from GTD. In

CB formulations, the analysis proceeds from Ansatz solutions for the currents obtained from optics-

theory [14], such as physical optics (PO) or the Fock theory. A Galerkin representation of the

unknown currents is used in regions of the scatterer where Ansatz solutions do not exist, such as

surfaces with materials and/or geometric irregularities. The CB approach can be more advantageous

since the MoM is based on currents as well. Hence, a continuous current flow can be modeled on the

whole surface of the scattering body. Also, since CB-based methods are inherently capable of

modeling arbitrary-shaped geometries. A number of CB hybrid methods have been discussed in the

literature [4, 15-17].

Here, a hybrid technique that combines the MM with aspects of PO has been used. It requires

less computational work than a pure MM scheme. Such as approach would be suitable for high-



frequencyanalysisor for situationsin whichthephysicaldimensionsof scatteringobjectswaslarge.

Theessenceof ahybridtechniquewouldbeto invokeasplittingof theoverallscatteringsurface(s)

into tworegions:(i) aMM zone(MMZ) whichcanbeusedoveranypartof thegivengeometry,but

is mostessentialover irregularand"non-smooth"geometries,and(ii) a POsub-region(POSR).

Currentsinducedon the scatteringandreflectingsurfacescould thenbe computedin two ways

dependingonwhethertheregionbelongedto theMMZ orwaspartof thePOSR.FortheMMZ, the

currentcalculationswouldproceedin termsof the basisfunctionswith coefficientsdetermined

throughthe solutionof a linear systemof equations(usualMM method). Over the POSR,a

superpositionof basisfunctionswithknowncoefficientscouldbeused.Thiscouldeffectivelylead

to a reductionin the sizeof linearequationsfrom N to N - Npowith N beingthetotal numberof

segmentsfor theentiresurfaceandNpothe numberof segmentsover thePOSR. However,the

approximationsinherentin suchas hybrid approachare listedbelow. For self-consistencyand

accuracy,boththeself-andmutual-couplingbetweentheMM andPOregionshavetobeconsidered.

Assumptions

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Inherent in the Hybrid MM-PO Approach:

PO approach in the illuminated region, and for a perfect electric or magnetic conductor.

Secondary radiation due to many-body inter-coupling, creeping wave effects and edge

diffraction neglected. Such effects could only be accounted for by combining the MM with

other techniques such as GTD, Fock theory etc..

PO applied only over regions of "smooth" geometry. All other irregular or "non-smooth"

geometric regions assigned to the MM domain.

Hybrid approach only valid for high frequencies or when dimensions of physical object much

larger than operating wavelength.

Applicable only for linear systems i.e. media for which the permeability (la), permittivity (e)

and conductivity (a) are constant and not functions of the field excitation.

Accuracy limited by the finiteness of the basis functions - since an exact MM solution is only

available in theory for an infinite basis set.

Advantages of the ADI-FDTD Simulation Approach:

(i) The ADI-FDTD simulation scheme allows for both a complete time-domain analysis and

the steady-state result. The latter can result by running the simulations up to longer times.



(ii)

(iii)

(iv)

(v)

(vi)

(vii)

The transient behavior cannot be obtained from the Moment Method or PO-MoM

schemes.

The ADI-FDTD allows for any arbitrary geometry including sharp corners and complex

features.

It is significantly faster than the traditional FDTD scheme since very large time steps can

be used without the need to be restricted to the CFL condition.

High frequency analyses for which the spatial discretization has to be small, can be

carried out relatively easily as the time-step can remain large. Similarly, the technique is

of advantage for large objects for which many grid points may be required.

Non-uniform, multi-grids can be employed for better resolution.

Absorbing boundary conditions can be implemented for accurate analyses.

Finally, dielectrics or perfect conductors or both can be studied with ADI-FDTD. Thus,

if becomes easy to look at problem that involve coatings, and multiple layers.

II. Theoretical Background of the Moment Method :

A time-harmonic electric field E lnc (r) incident on a conducting structure induces currents

J(r') on the surface, which in turn, radiate a secondary (or scattered) field E sea(r) given by:

E '¢" (r) =- j _ A(J, r) - V_>(p,r) ,

where A(J,r) the magnetic vector potential is:

(1)

A(S,r) -- []a/(4r0] f [{J(r') exp[-jkR]}/R ] dV', (2a)

and _(p,r) the electric scalar potential is expressed as:

• (p,r) = [1/(4r_e)] [ [0(r') exp[-jkR]}/R] dV' , (2b)

with R being the distance from the source point (r') to the observation point (r), i.e. R = Jr - r'[.

Since the tangential component of the total electric field must equal zero at the boundary of a perfect

conductor, one gets: E t°t (r)Jm = E 'c' (r)Jt_ + Eine(r)lt_n = 0 _ EinC(r)tm = -E'C'(r)J_. Using eqns.

(1) and (2a,2b), this yields the following electric field integral equation (EFIE) for the unknown



currentdensityJ(r') :

Ei*C(r)l_n= [jco_/(4r0J [ {J(r')exp[-jkR] }/R]dV' -1/(4r_jcze)] V{ fV.J (r') exp[-jkR]/R} dV']_n, (3)

Where the continuity equation: p(r') = -1/(j_) V.J (r') has been used to relate the charge density

p(r') to the current density J (r')

In this EFIE formulation, the current density J (r') is the unknown to be solved, given a

complete specification of the incident electric field Ei"C(r). The EFIE, which a linear integro-

differential equation has the following general form: Lf(x) = g(x), where g(x) denotes the incident E-

field excitation and f(x) the unknown currents. The moment method (MM) consists of converting the

EFIE into a matrix equation that can be solved for the unknown currents [1]. This is done by

expanding the unknown f(x) in terms of a finite number of sub-domain basis function fBi(x) as: f(x) =

l_ N ai fBi(x). Using these basis functions in the EFIE, and taking an inner product with of both sides

with respect to testing functions fTi(X) converts the integral equation into a system of N equations in

the N-unknowns ai. Thus, for example,

lE N ai < fTj(X), LfBi(x) > = < fTj(X), g(x) > , j = 1, 2, .... N

i.e. [Lji] [ai] = [gj ]

, (4)

By determining the unknown coefficients ai , the desired solution f(x) to the EFIE is obtained.

Usually, the test functions are taken to be the same as the basis functions [i.e. fTi(X) = fBi(X)] to ensure

that the matrix [L] is nonsingular.

II.A Simple Planar Surfaces for the Moment Method :

In general, the electromagnetic scattering problems of interest present the following four types

of structures [ 18] : (i) Surfaces - planar or curved, (ii) wires as in current driven wire antennas, (iii)

wire-wire junctions, and (iv) surface-wire junctions. The basis functions Bn(r) for surfaces were first

proposed by Rao et al. [19] and describe current flow on a surface between triangular patches. One

basis function is associated with the n th edge and is defined to be:



B,(r) = {_/(2An+_)} pn+__, for r • Tn_+

= 0 , elsewhere , (5)

where 1__ is the common edge between two triangles Tn+ and Tn--, having areas An_+, respectively.

The global position r and the local position vectors pR+__are shown in Fig. 1. The reference direction

of current flow is from Tn+ to Tn- and the total charge associated with each pair of triangles is zero

[18].

Basis functions for wires, wire-surface junctions and wire-wire junctions have similarly been

determined in the literature, and can be found in a review report by Veihl and Mittra [18]. However,

the details are not given here in this interim report. The omission arises from a desire to keep the

structures simple during this initial developmental stage, and because the MM-PO formulation has

only been applied thus far to surfaces. Based on the reports in the literature (e.g. [18]), In the near

the calculations can easily be extended to include other physical structures (such as wires and wire-

surface junctions) in the near future.

Using the surface basis functions, as a concrete yet simple demonstrative example, the current

J(R) can be expressed in terms of the bases Bl(r) as: J(R) = l_ _ ll(r) Bl(r). It must be mentioned,

that here again for simplicity, only a single surface has been considered. For multiple surfaces, the

above single sum will transform over to a double summation. Consequently, the scattered electric

field ESC'(r) can be expressed in terms of the vector and scalar potentials and the bases functions as:

E'C'(r) = 1_ _ li El(r) , (6a)

where, Et(r) = -j coAi(r)- V_i(r) , (6b)

Al(r) = 1.1J'J's' Bl(r') G(r,r') dS' , (6c)

and, _i(r) = (I/e) fJ's' bl(r') G(r,r') dS' , (6d)

where as given in [18], bi(r') = -[1/(j co)] V. Bl(r'). For the surface basis functions ofeqn. (5),

bl(r') = - { + _/(jcoAn-+)}for r' • Tn+_, and bi(r') = 0 elsewhere. In eqns. (6c) and (6d) above,

G(r,r') is the free space Green's function given by:

G(r,r') = exp[-jkR]/(4rtR) , (6e)

with R = [r-r'[. Substitution of the Green's function and the surface basis function Bi(r') from

eqn. (5) into eqns. (6) leads to the following expressions for the vector and scalar potentials:



Fig. 1. Definition of thesurfacebasisfunctionsB,(r) in terms of the global co-ordinates associated

with the origin O. The triangles Tn÷ and Tn.. on either side of the common boundary (i.e. the n th

edge) having length _ are shown [after reference 18].

lO



A,(r) = {_/(4rt)}[ffs,+ [L/(2A_+R)]exp[-jkR]pl+,dS'+ ffs'. [_/(2A_.R)]exp[-jkR]pLdS'], (7a)

and, _i(r) = {-1/(4rzjo_e)}[ffs,+ [Li/(Ai+R)] exp[-jkR] dS'- ffs'. [_/(Ai. R)]exp[-jkR].dS'] . (7b)

Since E in¢ = -E sca , the governing MM equation becomes: <EIDC.B.> = 1_ N It < BD .(jr_Ai + V_i ) >.

The use of (5) for the bases vectors and the one-point approximation for the surface integral at the

centroid, leads to:

< E l"c . B, > = (_/2) [ ElnC(rcn÷) • P_o+ + EID=(rc.-). Pc,- ] , (8a)

< BD .(jczAl ) > = (jc0I__/2) [Ai(rcn+) •Pcn+ + Ai(r_D.) • Pen- ] , (8b)

and, < Bn. V_i > = - < (V. BD ) _i > = _ [_i (reD-) - _i (re.+)] . (8c)

This can be cast in the usual matrix notation as: [V] = [Z] [I], where the elements of the matrix IV]

are: Vn = < E iD' • BD >, and the elements of [Z] are: Z_i = <B, .OczAi ) > + < Bn .V¢i > The

evaluation of Vn is straight-forward based on eqn. (8a). Hence, from a numerical implementation

standpoint, the main task in the solution of the system of linear equations is the evaluation of the

matrix elements 7-_i. The computation for Z_i are discussed next.

II.B

terms:

Evaluation of the Matrix Elements:

Inspection of eqns. (8b) and (8c), reveals that the matrix elements Z_i contain two types of

Ai(reD).P_n and _i(r_n). The Ai(r,n).pcn terms require surface integrations I1 of the form:

I1 - [_/(2Ai)] { ffs' (l/R) exp[-jkR] pidS' } , (9a)

where R = I rcD- r' I • Here, r' is a source point in the i th triangle, Izi the position vector from the

vertex of the ith triangle to the source point, and rcn the centroid of the n th triangle. Similarly, all of

the _i (Fen) terms require surface integrations I2 of the form:

I2 _ [Li/Ai] { J'fs' (l/R) exp[-jkR] dS' } (9b)

11



If thenthandithtrianglesaredifferent (i.e. for n * i), thevalueof R is alwaysnon-zero,andno

singularityresults.In suchcases,thefollowing methodscanall beusedfor evaluatingthetriangular

doubleintegrals: (i) A one-pointapproximationby samplingatthecentroidof thetriangle.This is

theleastaccuratemethod,butcouldsufficeifR >> Rcmax,withRcmaxbeingthemaximumdistance

betweenthecentroidsof all thepatches.(ii) Useof aseven-pointnumericalintegrationvalid for

triangularsourcesasgivenby Stroud[20]. (iii) A numericalintegrationtechniquebasedon the

normalizedareaco-ordinates[21] asdiscussedby Raoet al. [19]. However,if i = n, thenR can

approachzeroandthe integrandsbecomesingular.For suchsituations,thesingularityhasto be

removedby decomposingtheintegralsintoananalyticalandanumericalpartasoutlinedinRef. 18.

Thus:

I, _ { ffs' (l/R) exp[-jkR] p_ dS' } : ffs,(1/R){exp[-jkR]-1 }p_dS' + ffs' (p_/R) dS' , (10a)

and, I2 _ { ffs' (l/R) exp[-jkR] dS' } = ffs,(1/R){exp[-jkR]-1 }dS'+ ffs,(1/R) dS' , (10b)

i.e. I1 = Ill + I12, and I2 - I2! + I22 • Of the four integral terms on the right sides of eqns. (10a) and

(10b), Ill and I21 can both be integrated numerically, since Lt R->0 [ {exp[-jkR] -1 }/R] --) -jk, and

hence, the integrand is finite and non-divergent. The integrals I12 and I22 can be evaluated

analytically[18, 21,22], and the resulting expressions can best be understood in terms of Fig. 2

showing a planar triangle. In Fig. 2, the triangle is defined by a local reference frame (u,v,w) and

assumed to lie in the w = 0 plane. Each side of length I_ (i= 1,2,3) is shown to be opposite node ni

with co-ordinates (0,0,0), (L3,0,0) and (u3,v3,0). Also, as shown in Fig. 2, ti+ and ti are distances

from the observation point (uo,v0,O) to the end points of each side _. From a geometric analysis, one

obtains:

Sl" = - [(L3" Uo) (L3 - U3) + VoV3 ]/L1 , (1 la)

+

Sl = [(U3- Uo) (U3 - L3) + v3 (v3- vo )]/L1 , (1 lb)

s2"= - [u3 (u3 - uo) + v3 (v3 - vo )]]/L2 , (1 lb)

+

sz = [uo u3 + vo v3 ]/L2 , (11 d)

s3"=-uo, and S3+=L3-uo , (lle)tl=[(L3-uo)2+(v3-vo)2] 0'5 , (llf)

tl + - [(u3 - uo) 2 + (v3 - vo) 2 ] 0.5 , (1 lg)

t2+=[uo 2+vo 2]0.5 , (llh)

12
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(a)

Ua
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Fig. 2. Triangular geometry for the integral evaluations [alter reference 22]. (a) Plane triangle T in

its local frame (u,v,w -- 0). The length of the ith side OTi is denoted by _. (b) The tangent s ^ and

normal m 6 unit vectors on the triangle contour. (c) The distances ti and si defined in the text from the

local point at (uo, Vo, 0).
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t3+ = h" ; t2" - tl + ; t3" = t2÷ ,. (1 li)

tl 0 = V0 [(U3 - L3) + v3 (L3 - uo)] / L1 , (1 lj)

t2° = [uou3-vou3)]/L2 , and h ° = vo (llk)

In terms of the geometric parameters defined in eqn. (1 la-1 lk), the integrals I12 and I22 are [18,22] :

I12 = ffs'((pl/R) dS' = I + Pen I22 , (12a)

where, I = 0.5 i=]_ 3 mi {(ti0) 2 Ln [{ti + + si+}/{tt- + si}] + ti+si +- ti" St"} ,

and, I22 = J'j's,(1/R) dS' = i=lY'_ 3 ti0 Ln [{ti + + si+}/{ti + si}] . (12c)

(12b)

In eqn. (12b), mi are the outward unit normals from the lines opposite the i thnode as shown in

Fig. 2.

II.C Example of Incident Plane Wave for the Moment Method :

Incident excitation on the planar surface used for the MM above can have a variety of form

depending on the source. These could include plane waves for scattering problems, delta-gap and

magnetic frills for linear antenna sources, magnetic currents excitations for slot and aperture

antennas. Here, for simplicity once again, an incident plane wave excitation has been chosen as a

demonstrative example. Thus: EinC(r) = [Eo ae + E. a, ] exp[-jk.r], with ae and a_, being unit

vectors. In terms of Cartesian co-ordinates, these vectors can be expressed as:

ae=cosecosCax + cosesincay -sinOaz ; a®=-sincax + cos_ay -sineaz , (13a)

and , k = Ikl [sine cos, ax + sine sin, ay + cose az ] (13b)

III. Aspects of Physical Optics and the Hybrid MM-PO Scheme :

As already mentioned in the introduction section, the behavior of antennas (and radiators)

installed on complex conducting structures (e.g. ships, aircrafts, etc..) are modified with respect to

14



free-space operation due to the interactions between each antenna and the supporting structure. The

development of numerical methods for estimating the interactions between on-board antennas and

arbitrary-shaped, on-board, sub-structures is of great interest for electromagnetic compatibility

control. This includes the overall performance evaluation and control of all on-board radiating

systems, electromagnetic interference, and personnel radiation hazards.

Since the MM is computationally intensive and hence, limits the size of objects that can be

modeled, hybrid techniques that combine the MM with other approximate solutions have begun to

receive attention [10,11,23]. These can be classified as either ray-based [8,9,24] or current-based

[14-16,25,26] techniques. Of these, the ray-based techniques provide a considerable speed

advantage, but are difficult to implement for arbitrary geometries and complex objects. By contrast,

the current-based methods, in which one attempts to determine equivalent surface currents that

represent the actual objects, are capable of modeling irregular and complex geometries.

Here, the focus is on time-harmonic problems in which a large perfectly electric conducting

(PEC) body (e.g. aircraft) has a set of on-board antennas on its surface. This basic problem can be

replaced by an equivalent problem in which the PEC surface is replaced by equivalent currents

radiating in space. In the simplest sense, the problem reduces to obtaining the surface currents J

induced by the excitation fields (E l"c , H i"c ). Since current based MM scheme is computationally

intensive, a possible solution being attempted here is the use of an alternate hybrid method that

combines physical optics (PO) with the MM approach. This could be done by dividing the overall

surface into an MM zone (MMZ) which can be used over any part of the given geometry, but is most

essential over irregular and "non-smooth" geometries, and the remaining PO sub-region (POSR). As

discussed in the preceding section, the current J over the MMZ would be given as: J - 1_ _ li Bi(r).

Based on the coefficients Ii (obtained from a MM solution over MMZ), the scattered E-field could be

evaluated using eqn. (6). Such a simple solution, however, would include only the coupling between

the source radiation and the MMZ, and would not contain any interactions with the POSR.

The computational scheme being proposed for use here would couple the MM and the POSR

to include mutual interactions. It is similar to the hybrid methods that have been proposed by Hodges

and Rahmat-Samii [16] and Obelleiro et al. [27]. Let J1 and J2 represent the surface currents across

the MMZ and the POSR sub-domains, respectively. Quite generally, the electric-field integral

equation (EFIE) can be applied to the MMZ with J2 taken to be an effective source current, while the

magnetic-field integral equation (MFIE) applied to POSR with J2 as the source current. This leads to

15



thefollowing systemof coupledequations[16] •

and,

L,[Jl(r)] + L,[Jz(r)] : - Eineltan (r) , for r e MMZ (14a)

J2(r) = 2 n^ x Hint(r) + Lh[Jl(r)] + Lh[J2(r)] , for r e POSR (14b)

where n A is the unit surface normal, and the operators Le[d(r)] and Lh[J(r)] are defined as"

Le[J(r)] = -j_zA(r) -V_(r) = -j_ laJ'J's, J(r')G(r,r')dS' + {1/(jc_e)}Vffs, V'. J(r') G(r,r') dS',

(14c)

and, Lh[J(r)]=2nAxfJ's,J(r')x[V'G(r,r')]dS ' , (14d)

with G(r, r') = {exp[-j k Ir- r'l] }/{4 n Ir-r'l} • (14e)

Eqn. (14b) is complete, yet quite complicated since the current J2(r) has three components - (i) the

n Ax Hi"C(r) term originates includes the surface currents induced by the incident magnetic field (due

to the true sources), (ii) a Lh[J_(r)] term that arises from the mutual interaction effect of currents

Jdr) flowing in the MMZ. Such MMZ currents give rise to a scattered electric field, which in turn

can induce a current component in the POSR, and (iii) the Lh[J2(r)] term which denotes self-

induction contributions. These are the currents induced in the POSR due to currents already flowing

within this region.

For a PO implementation, the following approximations are made for simplicity :

(i) The first term of eqn. (14b) is taken to equal: 2 n A x Hin'(r) in the "lit" or "directly

illuminated" parts of the POSR, and is set to zero over the "shadow" sub-sections. The PO approach

uses the following approximation for current J on a conducting surface with an incident magnetic

field Hi and unit normal n^ : J = 2 y n^ x Hi where V is a coefficient that accounts for shadow

effects. For observation points r lying in the shadow region, V = 0 and y" = 1 otherwise. Thus, it is
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inherentlyassumedthatedge-diffractionand multiple-scattering effects are negligible. Clearly, this

would be an excellent approximation for surfaces that were large and relatively "fiat".

(ii) Next, the PO implementation assumes that self-induced currents can be neglected in

comparison to those arising from the direct incident excitation and mutual-coupling from the MMZ.

Consequently, the Lh[J_(r)] term is set to zero, and one effectively obtains the following

approximation:

J2(r)- 2 n ^ x Hint(r) + Lh[Jl(r)], for r _ "lit portion of POSR" (140

J2(r) - Lh[Jl(r)] , for r _ "dark/shadow portion of POSR" (14g)

The resulting coupled system of equations to be solved in the hybrid MM-PO scheme are thus given

by eqn. (14a), eqn. (14c), and eqn. (14f-g). Since the incident source field is always specified in any

problem, the only unknowns involve the currents Jl(r) over the MMZ. These can be solved using the

MM matrix procedure outlined in the previous section. Consequently, the overall solution process

does not become any more complicated than that for the MM. Thus, by choosing as small an MMZ

as possible (i.e., including only the irregular or complex geometric portions, or the near-field

regions), the computational requirement can be greatly reduced.

III.A Matrix Elements for the Hybrid MM-PO Scheme :

As with the previous discussion on the MM implementation, the relevant matrix equations for

the hybrid MM-PO scheme are given here for a simple surface geometry, neglecting any wires, wire-

surface and wire-wire interactions. In general, the MM could be applied to all wire sections, and

hence, all wires and wire-sections included in the MMZ. Using the surface basis functions Bn(r) as

given in eqn. (5), the appropriate matrix elements for the hybrid scheme can be obtained. The details

are given next.

Using Jl(R) = l_ N Ii(r) Bi(r), eqn. (14a) can be re-written with the aid ofeqn. (14c) as:

-j_ _ffSMM {_E N li(r')Bi(r')}G(r,r')dS' + {1/(j(oe)}VffsMM V. {,E _ l,(r')Bi(r')}G(r,r') dS' +

+ Le[J2(r)] - E|ncltan(r ) , for r _ MMZ (15a)
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where the surface integrals are over the MMZ. Hence, the inner product <Elnelt,n(r).Bn(r)> can be

expressed as the sum of three terms i.e., <Elnelt,n(r).Bn(r)> = Tin + T2, + T3n, where •

<EinCltsn(r).Bn(r)> = (Ln/2) [ ElnC(rcn+) • Pen+ + EinC(rcn-) • Pen- ] ,

Ttn = j<z _ < Bn(r ). J'J'sMM {IE N li(r')Bl(r')}G(r,r')dS'> , (15b)

T2n = - {1/(jc0e)} < Bn(r ).VJ'J'sMM 7'. {1_ N lt(r')Bl(r')}G(r,r') dS'> ,

Tan -- - < Bn(r ). Le[J2(r)] > (15d)

(from 8a)

(15c)

Expressions for the three terms Tin, T2n and T3_ can now be worked out. Thus:

Tin - ]_N II {(j_Ln/2) [Ai(ren+) • Pen+ + Ai(ren-) • Pen- ] } , (15e)

T2n = 1_ NII _ [¢i(ren-) - ¢i(ren+)] , (15f)

Tsn = - < BR(r ). {-jco _[J's' Jz(r')G(r,r')dS' + {1/(jcoe)}Vf[s, V'. J2(r') G(r,r') dS'}> , (15g)

where the surface integration for T3n is over the POSR. The terms Tln and T2n are the same as

obtained before in eqn. (8b) and (8c). Using eqns. (14f) and (14g), the T3n expression can be split

into two parts T3_1 and T3n2 with T3nl containing the 2 n A x HiRe(r) factor, and T3n2 the Lh[Jl(r)]

term. In turn, T3nl will have two terms due to the two integrals inherent in eqn. (15g). Expressing

T3ni = T3nlA + T3nla to denote the two terms, one has :

Tsnl = T3nlA + T3nlB = - < Bn(r ). {-jc0 _fJ'sPo {2 n A x Hlne(r ') } G(r,r')dS'> -

- < Bn(r ). {1/(jcoe)}VffsPo V'. {2n ^ x Hine(r')}G(r,r ') dS'} > (15h)

Hence,

T3n1A = 063 Ln _/(4_)}[ Pn+(ren+ ). AVnl+ + IDn-(ren- ). AVnl..] , (15i)
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where AVnl+ = {ffsPo {n ^ x Hi*C(r ') } exp(-jkfrcn+- r' I)/(I rcn+-r'l) dS' (15j)

Similarly, for T3nlB one gets :

T3nlB = {- Ln/(j4rI_e)}[ On+(r,,+). AVn2+ + p,_(r¢,_). AVn2-] , (15k)

where AVe+ = V{J'J'sPo V'. {n ^ x Hin¢(r')} exp(-jklrCn_+- r' 1)/(I rCn+-r'l) dS' (151)

Thus, both the T3nlA and T3nlB terms do not depend on the unknown coefficients Ii. Next, from

eqn. (15g), the T3n2 term has the form :

T3n2 : T3_A + T3n2B : - < Bn(r ). {-jcz laJ'J'sPo { Lh[Jl(r)]} G(r,r')dS'> -

- < B_(r). {1/(j63e)}VffSpO V'. { Lh[Jdr)]}G(r,r') dS'} > (15m)

Using the expansion Jl(r) = l_ rq Ii Bl(r), the T3rL2A and T3n2B factors can each be cast as an

appropriate summation over N weighted by the unknown coefficients li. Thus:

T3n2A -- 1_ N (lljcztal__) {[pn+.J'J'sPo {n ^ x j'Ji Bi(r") x V' G(r',r") dS"} G(r,r')dS'] +

+ [Pn-.J'J'sPo {n A x ;fi Bl(r") x V' G(r',r") dS"} G(r,r')dS'] , (15n)

where the innermost integral is over the two triangles Ti+_ in MMZ, and the outer integral is over the

entire POSR. Assuming that the MMZ and POSR are well separated so that the one-point formula

can be used as an approximation for the surface integral, one gets from eqn. (15n) :

T3n2A = 1_ N {(l, jco_L_ Li)/(32rt2)} [p,_+. el+ + Ion+. el- + On-. el+ + Pn-. el- ] , (15o)

with eL+= ffsPo {n^ x p__+(rcl+_)xV'[exp(-jklr'- rc_+_l)/Ir'-rc_+l]{exp(-jklrcn- r'[)/Ir_n- r'l }dS', (15p)
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Similarly,oneobtainsfor T3n2B '

T3n2B = l_ N {-(liLn Li)/(32r_ 2 jcoe)} [p.+. di++ p.+. di- + p.-o di++ p.-. di- ] , (15q)

di± = V fJ'sPoV'. {n A x pi±(rci._.)x7' [exp(-jkJr'- teL+l)/Jr'- rei±J] {exp(-jklren- r'J)/Ire. - r'l }dS', (15r)

Putting together the Tin, T2n, T3nlA, T3nlB, T3n2A and T3n2B terms a composite matrix equation of the

form [V + 5V] = [Z + 5Z]. [I], i.e. [V* ] = [Z* ]. [I] results. Using the following notation for

compactness:

Pn = (_/2) [ Eine(rcn+). Pea+ + Et"e(ren-). Pen- ] , (16a)

Q, = {j_ L_ "_/(4n)}[ pn+(ren+ ). AVnI+ + Pn-(ren-- ). AVnl--] ,

R, = {- _/(j4n_)} [ pn+(ren+ ). AVn2+ + p.-(re.- ). AV,a.. ] ,

S,, = {(j_I_,_/2) [Ai(rcn+). Pen+ + Ai(rcn-). Pen- ] } , (16d)

T,i = L_ [_i(ren-)-_i(rc,+)] , (16e)

U,i = {(jcolal._ Li)/(32n2)} [pn+. el+ + Pn+. el- + Pn--. el+ + Pn-. el-- ]

V,i = {-(I__ Li)/(32= 2 jcoe)} [Pn+. dl++ Pn+* di- + Pn-* di++ Pn-. di- ]

one has :

(16b)

(16c)

, (16f)

, (16g)

[V+SV]n =[V*]. = [P,+Q, +R,] , (16h)

and , [Z + 5Z]ni = [Z' ]ni = [S,i + T,_ + U,i + V,i] (16i)

Solution of the modified matrix [V* ] = [Z* ] [I], then yields the unknown coefficients [I] as

before, but with much less computational burden.

IV. The Finite-Difference, Time-Domain (FDTD) Method

The finite-difference, time-domain (FDTD) technique, was first proposed by Yee [28] as a
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numericalmethodfor thedirectsolutionof Maxwell's time-dependentcurl equations.Itspopularity

continuesto growasthecomputationalcostsdecline.TheMaxwell'scurl equationsare [29]:

at e e
, (17)

_2Vx _
at /1 /2

where tr is electrical conductance; p' the magnetic conductance is zero for the present problem.

In this method, the electric (E) and magnetic (H) fields are discretized across separate nodes

that are offby halfa grid spacing. The time instants at which the E and H fields are updated are also

offby half a time step. The discretization of the Maxwell curl equations results in six explicit finite

difference equations [30]. For example, for a two-dimensional (2D) transverse magnetic case, the z

component of the electric field Ez and y component of the magnetic field Hy are given as :

1

E;+l/ • .X

tz,j) = (.

1+--

tTioAt

2gi,j n • •

a,,jAt )E_ (t, j ) +

2e_,s

At

8'4 [ H_+I/2(i'j)-H_ +':2(i-l'j)

14 ¢7,,jAt Ax

rrn+l/2 :.t-*x u,j-1)]

2E_,j

_y

(18a)

rrn-l/2 .... At E_(i,j+l)-E_(i,j)]H_+l/2(i,j) = rtx U,J)---[ " ,
Ay

(18b)

and, H _*'/2 (i, j) = r_ x""-'/2tt,....J ) _ __At[E"_ (i + l' J)- E z" (t,"j')]
/1 Ax

(18c)

In eqns. (18), Ax and Ay are grid spacings along the x and y directions, respectively, while At is

the time step. The six finite-difference equations are stepped in time, alternately updating the electric

and magnetic field components at each grid point. The value ofo'ijis about 102-10 .3 and

Ax = Ay = 108m has been used here, so that: °'_°At

2Ei.j
<< 1. This condition simplifies eqn.(18a) to:

_ H,,,:2(i,j) ,,,+1/2,. -1)]n • • ---/"/y t,t--l,j) ,,,+1/2 .... ,+1/2rt x U,j)-H_ (i,j
E"÷l(i,j)=Ez(t,j)+ At[ • Y .(18d)

e,,+ Ax Ay

This FDTD method is well suited for solving the cellular scattering problem since the
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leapfrog method leads to a second-order accuracy in both time and space. Furthermore, the following

Courant criterion as suggested for Yee's algorithm was implemented to guarantee accuracy and

stability [29]"

1

Vmax'At<- Im ---:--[ 1 +14 1 ' (19)

_2 Ay_ _2

where Vm_, is the maximum signal phase velocity in the configuration being considered. If the value of

one of Ax and At is known or assigned, the value of other one can then be obtained.

Due to finiteness of the region used in any numerical simulation, care has to be taken to avoid

artificial back-reflections from the simulation boundaries. Appropriate absorbing boundary

conditions have to be implemented to ensure that unrealistic and unphysical wave reflections do not

introduce spurious energy within the simulation region. A variety of boundary conditions have been

reported [31] to prevent artificial reflections at the edges of the computational domain. These are

either based on the solution of the wave equation [32,33], or the use of absorbing layers [30]. The

Berenger approach [30] of using a perfectly matched layer (PML) provides orders of magnitude

improvement in performance relative to the other techniques [29], and so has been implemented here.

Since the wave decays very rapidly in the PML material of only a few layers (-10), exponential time-

stepping has been used instead of the usual Yee time-stepping. This changes equation (17) within the

PML to:

E.+1 ..... -,r_(i)_:_v. (1 - e-°_(i)_/e) H"_, tt, j)=e r._,- [- y(i+l/2,j)+Hy(i-1/Z,j)] (20a)
cr (i)Ax

E.+, .... -,_.(:)a._._. (1-e-a'(J)_:_)[_H_zy V,J) =e t_y- (i,j+l/2)+H;(i,j-1/2)] , (20b)
try(j)Ay

n+l • -tr_(j+l/2)At/p yrnz. . , I

H x (t+l/2,j)=e rt_U+l/2,j)4
(1 - e -tr'y(j+l/2)_t//_ )

cr_(j+l/2)Ay , (20c)

X i,/ • • n • • ¢1 • , n • •{E._(t,j + l) + E_y(t,j + 1) -[E_x(t,j) + E_x(t,j)]}

H.+_ ... -tr'_(i+l/2)At/ _ t..ln [¢ ..[_ 1 /
y u_l/2,j)=e "'yt' /2,j)-_

(1 - e -'¢ (i+1/2)At//,/)

o'_(i + 1/ 2)Ax (20d)

x {E=" (t"+ 1, j) + E.y"(i+l,j)-[E_(i,j)+E."x(i,j)]}
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In the above,cr and cr ° are the electric and magnetic conductivities, respectively, and both are

functions of the grid position index i andj. Component Ez is divided into Ezx and Ezy in the PML for

TM case. In the computation region, the traditional discretizations for the curl functions 18(a-c) are

used. If the impedance of the PML medium equals that of the material used in the computation

region, then no reflection occur at the interface of these two materials. An essential conditional

requirement is:

O" O'"
- (21)

e. /t r

The index "cr" denotes the computation region, and e 0 and/t o are used if the computation domain is

air or a vacuum.

One of the advantages of this time domain method is that both narrow- and broad-band source

excitations can easily be obtained. For broad-band pulse signals, a discrete Fourier transform (DFT)

of the transient behavior yields the complete frequency response. The discrete Fourier transform,

taken at every time-step of the simulation, is expressed by eqn. (22) below:

N,_,-1 -- j 2;den)G(kAf) = At/_,g(nAt)exp( , with k = 0,1,2,...Nf , (22)
n=o Nt

where G(kAf) is the complex frequency domain data, g(nAt) are the time domain E and H fields, Nt

is the length of the DFT, Af is the frequency step, and Nf represents the number of frequencies

Ni = 1/(AfAr).

Due to the computational limitations, a relatively small simulation domain is chosen for

obtaining the fields from the FDTD method. This region closely surrounds the cell, and so, only the

near-field distributions are directly obtained. Far field information on the intensity and phase can be

obtained from the near-field E and H values based on the free-space Green's function and an

integration procedure over a surface surrounding the cell [34,35]. In this procedure, the radiated E

and H fields (in the frequency domain) tangential to a virtual surface completely surrounding the cell

are converted into equivalent electric and magnetic surface current densities, Jeq and M_q. These are

then weighted by the Green's function and finally integrated to provide the desired far-field response.

The current densities Jeq and Meq can be obtained as:

•]eq (r', o9) = h x/-t(r', o9) (23a)
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_t q (r',m) = -h x E(r',m) (23b)

where r' is point on the virtual surface and h is a unit vector normal to the surface. /4 and/_ are

obtained by averaging the nearest components around the grid point on the virtual surface. For

example, in the 2D case, the far-field is produced by equivalent electric and magnetic currents that

are tangential to the non-physical virtual contour as shown in Fig. 3. The figure shows the overall

geometric schematic that can be used for the simulations. The cell is shown in the center, with the

electromagnetic wave incident from the left. The PML surrounds the simulation region completely

on the periphery. Two contours, one for the near-to-far field transformation, and the other for

evaluations of the total and scattering fields have also been shown in Fig. 3. On the left edge of the

virtual contour for the near-to-far field transformation,/_(i + 1 / 2, j) and/4(i, j) are obtained by:

/_(i, j + 1/ 2) = [J_(i, j) +/_(i, j + 1)]/2

H(i + 1/ 2, j) = [/t(i, j) +/_(i + 1, j)] / 2

The scattered electrical field in the far field region is given by [36] •

Mie.cylindar,a = 2 micrometer.lambda = 2 micrometer,m = 1.02
i

Mie
0 FDTD

(24a)

(24b)

Fig. 3
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Simple schematic of the geometry used for the FDTD scattering calculations for a single cell•
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E_ (r', co) = -jo_'.A, (r', 09) + jmrff .F(r', 09) (25a)

A_(r',co) = _ IJ,(r',co)H(oE)[k lr-r']]dl' (25b)

e _Ms(r,,co)" pH_2)[klr_r, llar (25c)
F_ (r', oJ) = -_-

Here, r is the point at far field. As [kr [---_oo, the Hankel function can be written as:

Ho(2)(kr) ~ (___)1/2 e-j_ . (25d)

The phase function describing a scattering pattern, F(0) is thus:

N

keJ("4) __,[-rfi'. - ' " x -
F(O) _ n=l Jeq (r ) - z Meq. r]eJ_r'Ax (25e)

Here 7"/= /'U_o° , k is the wave number, N is the number of segment on the virtual contour. _.' is the

unit vector on z direction, F is the unit vector of the far field point and 0 is the scattering angle.

V. Validation of the FDTD Numerical Implementation

Validation for the numerical implementation of the above FDTD mathematical model was first

carried out by comparing the predicted scattering patterns for homogeneous spheres based on the

FDTD technique, against the results of Mie theory [37]. The gird size for the FDTD calculations was

2/40. The source pulse used in the simulations was a Gaussian pulse, propagating along the x

direction defined as:

E_z(s,j) = exp(- (t/r- 3)2) sin(2nf(t - 3r)) (26)

In eqn. (26), Ex'(Sd) is the line source,f is the central frequency of interest, and r is the characteristic time

of the Gaussian pulse determined by the frequency bandwidth of interest.

Scattering fields were obtained at every grid point, as the Gaussian pulse propagated through the

entire computation region. The number of time steps for the DFT computation [the n in eqn.(6)] was

chosen to be sufficiently large to ensure the pulse magnitude approached zero. The phase function

F(0) was computed after the FDTD was completed, in 5-degree increments. Results of the
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scatteringpatternsobtainedfrom FDTD simulationsfor scattererswith two different indexesof

refraction(m-1.02 andm-1.37) areshownin Figs.4aand4b.Resultsof theMie theoryarealso

shownfor comparison.The radiusof the cell (assumedto be a homogeneoussphereplacedin

vacuum)wastakentobe2 lJm,whilethechosenopticalwavelengthwasalso2 IJm.The plots of Fig.

4 clearly show that the refraction index strongly affects the scattering pattern. The number of

fluctuations increases with the refractive index. More importantly, results obtained from the FDTD

technique match the predictions of Mie theory [37] fairly well. The agreement at small scattering

angle (0~50 °) is particularly good, with a slight deviation at higher angles. This may be due to

reflection at the boundaries and dispersion of scattered light within the FDTD grid. Fig. 5 shows that

the comparison between FDTD and Mie theory for a 0.535 _tm circular object of dielectric constant

1.37, with extracellular fluid of relative permittivity 1.35 surrounding it. The cellular values were

chosen in keeping with published data [38,39]. A 0.6328 lxm wavelength was used for these

calculations, since it corresponds to that of a He-Ne laser, an optical source that is commonly used.

,---?.
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Fig. 4. Validation of the vacuum 2D TM FDTD code. The environment is vacuum. The index

of refraction of cell is: (a) 1.02, and (b)1.37. 2 --2 I.tm and a = 2 _tm.
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Cylindar_a = 525 micrometer.lambda = 0.6328 micrometer.m = 1 37/1 35,nce u = 137
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Fig.5. Validation of the 2D TM FDTD code. Index of refraction of cell is 1.37 and that of the

enviroment fluid is 1.35. He-Ne laser wavelength (2, =0.63281.tm) is used. a = 0.525 I.tm.

These results once again reveal close agreement between the FDTD results and the Mie theory,

thereby validating the electromagnetic model and its numerical implementation. Furthermore, Fig. 5

shows that the code is not only valid for simulations in vacuum, but also capable of treating spatially

non-uniform relative permittivities.

VI. The Alternating Direction Implicit (ADI) FDTD Method

Though the FDTD method is widely used for simulating electromagnetic problems, it has one

significant drawback. It is based on the Courant-Friedrich-Levy (CFL) condition [29] that places a

constraint on the time step for a given grid spacing. Under the traditional FDTD, smaller grid

spacing (as would be required for complicated geometries with inflexion points, or sharp comers, or

sizes comparable to the wavelengths) translates into a smaller time step. This increases the

computational time and burden significantly. Also, analyses for high-frequency signals would be

slow and time-consuming.

A method for overcoming this difficulty has recently been proposed [40] for two-dimensional

problems that introduces an alternating direction implicit FDTD method (the ADI-FDTD approach).

The method is based on the alternating direction implicit method of mathematics [41 ], and has been
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applied to Yee's staggered cell [28] to solve Maxwell's equations. The ADI-FDTD scheme has

recently been generalized to cover three-dimensional (3D) situations [42, 43].

Since the ADI-TDFD scheme is basically similar to the FDTD method already discussed, the

details are not given here. However, the inherent equations that change due to the use of ADI, are

presented and discussed below. The 3D space is discretized using the standard Yee-gird. Berenger's

perfectly matched layer (PML) is used around the 3D computation region as the absorption boundary

condition. It requires field splitting. Then the 6 conventional Maxwell equations are changed into 12.

ADI demands the one FDTD time step into two steps. The equations used in the first 1/2At are:

E n+I/2 -E_y in+i/2,j,k"+ n

e _ ,+_:2.j,k cryE_yi+I/2jk
At/2 ,,

(27a)

n+l/2 In+l/2 "H n+l/2 n+l/2

H= ,+,/2.j+1:2._+H_yl,+l,2.j+1:2.,-( = ,'+i,'2,:-i.:2.k+H_y ,+:2.j-i/2.k)

_y

E n+l/2 n

e _"'+':_'"'-E_'I'+"_'J'*+a,E,.,[,_+,:_.,.,=
At/2

(27b)

E n+l/2 _../+l

E yz #.j+l/2,k -Ey_ i2,k +trz E .

At�2 r, _,j+l:2.k

(27c)

n+l/2 -Ey_ _,j+_Eyx t,j+l/2,k
E

At/2

(27d)

E n+l/2 _E 1"
zx t,j,k+l/2 aXli,j,k+l/2£

At/2

(27e)

tl

:2,, _-°rx Evx ij+ :2,k =

E n+O'x _l_,j,k+l:2

In+l/2 inE.y - E_y
i,j,k+l / 2 i.j.k+l / 2

E
At�2

(270

In+l/2 n

Hxyli,j+l/2j:+l/2-H_y i,)+1/2,k+1/2

:l
At/2

(27g)

n

+O'yEzy i,y,k+l/2 =

Az

In+l/2 H n+l:2 "H n+l/2 H .+1/2

H_y ,,J+ :2,k+ :2 + = i,j+l/2,k+l/2 -( xy i.j+l/2.k-I/2 + xz i,j+l/2.k- /2 )

Az

in nH " " -(H_y + H=l,_1:2.j+l/2,k)=[,+1::,j+l:2,k+ H=L+l/2,j+l:2,k ,-I/2,:+l,2,J:

Ax

in+ll2 n+l/2 -(H_, n+l/2 n+l/2HYx i+/2,j,k+/2+ HYz i,j+I/2,k+l:2 i,j+2,_r-:2+ HYz i,j+It2,k-I/2 )

Ax

H . . H .

Hxv n; =
"['0" - i,j+ /2,k+ /2

ay

n n n 7,j,k+leo + ,,.,,+ +E.,
,Sy
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p--'--- At/2

(27h)
I1 n

112 _ ' 1/2-k+1¢2n4- H ,i,_1 .....
:l _- _,t/2

(27i)
i1+1t l ,

, -Hyxli+l:2,J,t+|12 '¢_ H I
H_-t':_'l,*':z,J'_'_ _- , :h,,:2,j,k*_:z

t.t_-- At/2

_2 in÷l:2 _.

.÷v2 - /"*l +E:/, ,_¢zk _:l s

I - w _ 3_ Ii,J+ltl'k+l_ 2 ....

... _yx|/,j+l /2.k+l 2 _Z

_(E£,,,.,.,+Ed.,:,.,.,)
E : +E,,IL:,,,,,,,
l_ xy _i+l/ 2,j,k+l

tn+ll2

-{. Mijk+_:z "
_ _n+I/2 , .

15_,_i+i,j,k,_,2+ _q_.i,j,k+v_._z
= Ax

Yl Ixli+l:2,j+l/l,_¢ _ x n'r ,, ,n+l }2

11_---"'- Atl2 E '"+_:2 +E'/i+_:zJk)-( _I,+_:2,_,, "in+l:2 _ in+l}2

=_ :,yn nn+l 2 "" / ,
u I -n-l,+,',_+"_'_+a H_I.,
1-1 _lt+U 2,j+l/2,k ...... Y _:lt+_/2,j+l/2,1c

/_/- At/2

(27m)

The equations used in the secOnd 1/2At are:

tn+l E la+i: 2

_._*_.:_,,,_-/LyI,_,_,j,_ +aye 1_+':_ =xy| i+1 t 2,j,_

e-------- At/2

_/t+b' 2,j+ll 2,/ _y

(28b)
ln+ll 2 - tn+l? 2

+G z.. -- . . , Ey:li.j+l,2, k

_, Atl2

:2 |n+I/2 \

, ,S I "+_ + H,=li j_l/2,k-I" 2)
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J

(28c)

6--------- At/2

(28a)

: E 1"*1:2

(28e)

'"+_ -E '"+_'_ E l"+_'_=
E.l,,j.k+l:_ ,-L,J,_: +cry ._,j,k+1::

AlIA

(28f)

H in+|

zx|/+I / 2,j +1 / 2,k

,n+l -- xy_i_l/2 j+ /2,k

+ H _li+_:2,/+t:z,k

Ax

+I/2 in+I�2

.+l:I . • |a +H:l i .+1:2k_i:Z)

£1 yx_t+|/2,j,k+Â/2 ' ' [_

H zst_,j+_:2,k+l¢2
ay

in+l

•.., +er" -e '7,
G,I,,+,.,.I:,,,'I,:+_*,.__:_t ,_,:,+::+E'I'.J,'+I:_)

H__:_,_ '_ cr't-/ _'+_'_ =
_..-- .,. ' y xYli,j+l}2,k+l/2

(28g)
n+l : 2

rr [n+l -nx, I, i+U2,k+l:2, a_,..'r* " |n+I/2

it--'-----"-- At�2

(28h)
n+_ |n+l ,I2

z YZli+U2,J,k+|/2

(28i)
t n+l tn+1 /2

H " H In+l?2 =n _ 2- Yxli+t¢2'J'k+l;2+cr
l.t yx_i+l/2,j,k+|/2 ...... x YXli+l/2,j,k+U2

I t----------- All 2

n+l :2 tn+| : 2

•.+i,2 ..-.t +E:I _ .,1::k-l:z)

E 1"+':2 ,,.+E'I_ "-I'' "'""......
yXli,j+l / 2,k+l: z ' _.

E I"+1 +E I"+_2jk)
_( xY|i+I/2,J,k xz|i+l: , ,t,,+l + E tn+lI . xzl_+_;_.J,k+_

_ xy _ i+l i2,j,k+l

= __ Az

E /"+_<_ "E '"+_'_,_ E _"+_:_

t,x|i+Lj,k+U 2

_x

_n+l

/'_ _n+l . --JL/.r.x .+l:2f+l/2,k . .. |n+l/2 ----- Y_Ii+L'/*_'_'__._+_:z,_._"-H _l,+_,_+_:z'_+cr.t'IM_+_:_,s+_:z,_

E 1"+''_ " '"+"_ -("_'+I'_"'_+E'I'+_'_'_'_)

t_+l t _ Ay
--H . . , * --'__-

It At l 2

(28m)
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Bring (27k) and (27m) into (27a), we get:

in+t/2

_ Byl,+tj2a. kBByl,.l/2.:_t.k ExYli+l/2,j_l,k "t'(1 d- Bylm:2j. k (BB3_m,2j.k

E :"_ - a_,+,,..eoL_.
- BYI,,:: ,:.k BByt_':2 J,* _yI_,:2 .j+t.k

" H ,.+1,,2 -H 1"+1:2+_yl,÷.2.j.,( ,_I,÷,J.÷1,2.._,,÷,,--,:_.*+Kail,÷.2..+,:_,,- Ka,l,+,:_.j_._,,)
n i , , , "E in+l:,'2 _ |n+|,'2.

Here Kailm/2j+t,,a,k = aA)_,+,:2,J÷l:2,k ",rl,+t/2,j+l/2,, + BBylm:2 j+l/Zk ( x,I, j+_,k--/_=l,,j,* )

' _ -, E In+l/2 ,+ BByIm:2 j ,k)) _Yli+v2j k

(27n) is the implicit update expression of Exy, a tri-diagonal matrix needs to be solved. In the

same way, we can get the update expression of Eyz and Ezx in the first half step.

(27n)

Bring (28i) and (28j) into (28a), we get:

tn+l/2 ' E ,n+l/2

-- B'ZIi+I/2,, k BBzl,.I/2.j.k-IfXZl .u2 j,k-I +(I "I-BZIi+IJ2,j,k (BBT"li4-1/2.j,k + BBzIi'I/2"J"-')) x.zli+l/2,j,k

H ,,,,,,:2 - H [,,÷,:2 + Kail,,,,2.,.,+,, 2 _Kail,.,:2._.,_,:,)
+ Bzl,+,::,j,_(,"l,+,,_,j._+,,:,,,I,,:_.j.,-,:_

(28n)

n ' E in+l/2 in+I/2

l.lereKat],+_:w,,+,:2= AAzl,+,:2../,,+,::H:I,./2'j,,+_:2+ BBzl'+'"-/'k+t:2( ,,yl,,::,./,,+,- E_l'+':z"'*)

In the same way, we can get the update expression of Eyx and Ezy in the second half step.

The coefficient used in (27n) and (28n) are:

tT i:,At

.4,.tE ij k X, y, z
Aqli,j,k-"- crokAf ''q=

1+_
4Eqk
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At

Bq _,j,k - 2e°'kAq
1 -_ Cr°kAt 'q = x,y,z,

4euk

AAq _,./,k- 4/ti:

1_ crukAt 'q x, y,z

4Hu.k

, and

At

BBq _,j,, = 2/'zu*Aq
_ok At q = x, y, z

l+--

4/luk

VII. Simple Example Implementation and Results

Numerical codes were developed and implemented for electromagnetic calculations of the

scattered fields and power, based on both the MM and hybrid schemes. The intent was to

demonstrate that the simulation capability is successfully in place at Old Dominion University. These

codes could be tested further for validation and refinement, and applied to real scattering problems

with complex geometries. Here, the numerical codes were used only for a simple geometry and the

calculation results presented in detail in the next section.

VII.A MM-Related Calculations

A simple flat, two-dimensional (2D) rectangular geometry was considered lying in the z = 0

plane. A frequency of 30 GHz was chosen. In accordance with the triangular patch basis functions

for surfaces given in section III.A, this 2D plate was divided into 16 triangles with uniform grid

spacings Ax = Ay ( =A), which was taken to be 1/10 of the operating wavelength. The extent along

the x-axis was 4 A, and 2A along the y-axis. In general, rectangular shapes with M and N segments

along the x- and y-axes lead to 2MN triangles, with a total number of basis functions Nbasis (which

requires an accounting of all mutually adjacent triangles) given by : Nbasis = 3MN - M - N. Hence,
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this geometry required 18 basis functions. All triangles had identical areas.

The numerical implementation has been carried out completely, with the corresponding

source code written in FORTRAN. Results for the impedance matrix [Z] and the current were

obtained, and are given below. The [Z] elements, which were complex, were as:

1 1

1 3

1 5

1 7

1 9

1 ii

1 13

1 15

1 17

2 1

2 3

2 5

2 7

2 9

2 ii

2 13
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3 3
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3 7

3 9

3 ii

3 13
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4 3

4 5

4 7

4 9
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4 13

4 15
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5 1
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5 5

5 7
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5 ii

5 13

(3.4616823E-6,1.2840886E-3)

(3.0042051E-6,3.5189796E-6)

(3.842653E-6,-4.7652775E-4)

(3.645482E-6,5.2011955E-6)

(6.489668E-6,3.6305928E-6)

(4.454643E-6,3.6243454E-7)

(7.99366E-6,4.103712E-5)

(5.052641E-6,6.984539E-7)

(5.4896554E-7,-3.2988587E-6

(3.4260583E-6,2.027901E-5)
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(3.7557738E-6,-5.070338E-4)

(5.7958486E-6,3.9000697E-6)
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3.2690945E-6,1.7910324E-5

2.624891E-6,8.7982584E-7)
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6.8078406E-6,5.577691E-6)
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1.2968917E-6,2.6661093E-5)
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(7.586889E-7,-2.6439611E-6)

3.2611687E-6,1.7748624E-5)
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i0 (6.8089884E-6,6.1009163E-6)
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(-3.9065594E-7,1.3647906E-5
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(-2.5795543E-9,6.418809E-6)
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(I.2666419E-7,8.195884E-7)

(-9.1828565E-7,1.8520703E-6)
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(-6.315448E-7,1.8196948E-5
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(-I.6209246E-6,1.2313833E-5)

(4.86008E-6,5.2826735E-4)
(3.4827353E-6,1.0371624E-6)
(4.0270933E-6,-3.307024E-5)
(2.268097E-6,-2.0473858E-6)
(5.07908E-6,5.9779922E-6)
(2.0555075E-6,-2.1821397E-6)
(4.359218E-6,-I.3717479E-5)
(2.1456116E-6,-2.2294877E-6)
(2.5026731E-6,6.014091E-6)

(4.7143912E-6,3.7682817E-5)
(4.371323E-6,9.165892E-7)
(4.211872E-6,-3.24895E-4)
(3.3735E-6,-4.061778E-6)
(5.808194E-6,-4.4598E-4)
(3.7652316E-6,-7.6195806E-7)
(4.6897002E-6,6.35869E-4)
(3.505615E-6,-2.2868644E-6)
(3.1629147E-6,4.0453294E-5)

(4.045937E-6,6.0831753E-6)
(4.7829576E-6,4.95624E-4)
(3.7910394E-6,8.388228E-6)
(4.084074E-6,-3.038997E-5)
(5.7168763E-6,-I.932701E-5)
(5.1499346E-6,5.8002206E-6)
(4.3222653E-6,-I.068665E-5)
(4.469397E-6
(3.507475E-6

(2.9906414E-6
(4.6364134E-6
(2.8951822E-6
(4.2640926E-6

-1.23309E-5)
3.679107E-4)
1.0069923E-6)
3.566128E-5)
6.0595147E-7)
-3.3341735E-4)

(4.823016E-6,-I.7244968E-6)
(5.886068E-6,-4.133595E-4)
(3.3484016E-6,-2.0766692E-6)
(4.803733E-6,6.267012E-4)
(3.4199235E-6,1.1537359E-6)

(3.1832396E-6,-I.2917593E-5)
(3.746049E-6,1.5019422E-5)
(2.4329631E-6,-2.4869798E-5)
(2.7302235E-6,5.62648E-6)
(6.5537283E-6,-4.780589E-4)
(5.401115E-6,5.2356112E-6)
(7.816293E-6,3.2658965E-4)
(5.09427E-6,-I.9881284E-7)
(4.943645E-7,2.4520778E-5)

(2.9264238E-6,-I.7075954E-6)
(3.7765526E-6,3.432097E-5)
(2.52383E-6,3.9494016E-6)

ii 12
ii 14
ii 16
ii 18
12 2
12 4
12 6
12 8
12 10
12 12
12 14
12 16
12 18
13 2
13 4
13 6
13 8
13 10
13 12
13 14
13 16
13 18
14 2
14 4
14 6
14 8
14 i0
14 12
14 14
14 16
14 18
15 2
15 4
15 6
15 8
15 i0
15 12
15 14
15 16
15 18
16 2
16 4
16 6
16 8
16 i0
16 12
16 14
16 16
16 18
17 2
17 4
17 6

(-I.3598656E-6,3.383081E-7)
(-2.8110275E-6,-2.593456E-7)
(-7.775048E-7,3.5555772E-6)
(-I.7744276E-6,-5.3602457E-4)
4.4065127E-6,8.269442E-7)
2.2930721E-6,-6.2110854E-7)
3.3456917E-6,-4.278911E-6)
5.769255E-6,-4.6229013E-4)
(3.7358036E-6,-7.795356E-7)
(4.6326836E-6,6.4045283E-4)
(3.4564918E-6,-2.4191292E-6
(3.1911517E-6,4.1785286E-5)
(I.6217407E-6,7.148078E-7)
4.8215156E-6,5.119455E-4)
3.4536001E-6,1.0199728E-6)
4.0555864E-6,-3.173011E-5)
5.6774297E-6,-2.0338608E-5
(5.1145066E-6,5.8891073E-6
(4.267819E-6,-I.1276143E-5
(4.414308E-6,-I.3024182E-5
(3.5342582E-6,3.636501E-4)
(2.4745818E-6,5.796431E-6)
4.675405E-6,3.6672034E-5)
4.3361346E-6,1.0062317E-6)
4.237981E-6,-3.2915631E-4)
4.7860794E-6,-I.8788076E-6
(5.8471296E-6,-4.2966983E-4
(3.3006272E-6,-2.1873131E-6
(4.7467165E-6,6.3128536E-4)
(3.442733E-6,1.0234307E-6)
(3.1346801E-6,3.9121303E-5)
4.0093536E-6,5.9297226E-6)
4.7443963E-6,4.7930201E-4)
3.8135476E-6,8.257315E-6)
3.3111055E-6,-2.0225952E-6)
(5.756332E-6,-I.8315402E-5)
(I.9609688E-6,-2.219029E-6)
(4.3767076E-6,-I.00971665E-5)
(2.9495506E-6,1.1702908E-6
(3.4806917E-6,3.7217108E-4
3.43567E-6,3.0039517E-5)
3.9389565E-6,5.3375906E-6)
2.3665334E-6,4.399628E-6)
6.785991E-6,-4.7987667E-4)
(6.0897586E-6,2.0778683E-5
(7.867391E-6,5.731445E-5)
(6.8187973E-6,6.3021616E-8
(4.5478827E-7,5.852904E-4)
(I.1977281E-6,7.844572E-6)
3.2961843E-6,-I.1774497E-5
4.271087E-6,1.7065055E-5)
2.2696715E-6,-2.7472983E-5
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17 7 (2.5204165E-6,5.2169916E-6)
17 9 (6.6664656E-6,-4.949858E-4)
17 ii (6.4213836E-6,2.2922446E-5)
17 13 (7.701049E-6,5.3480434E-5)
17 15 (6.6619795E-6,-9.972264E-7)
17 17 (4.5446495E-7,5.5500923E-4)
18 1 (2.3686616E-6,-2.2426502E-7)
18 3 (3.4091262E-6,-I.0631396E-5)
18 5 (2.4565272E-6,5.6154176E-6)
18 7 (2.1063815E-6,-3.007615E-5)
18 9 (6.0832644E-6,2.0650237E-5)
18 ii (6.7933647E-6,-5.3334643E-4)
18 13 (6.64835E-6,8.959851E-6)
18 15 (7.4807785E-6,3.0108174E-4)
18 17 (5.139923E-7,2.4796653E-5)

The current magnitudes were as:

17 8 (6.4145865E-6,2.2780714E-5)

17 i0 (6.6735424E-6,-5.057028E-4

17 12 (6.799824E-6,9.558169E-6)

17 14 (7.648538E-6,3.1383574E-4)

17 16 (8.3751774E-7,2.9638471E-5

17 18 (8.155057E-7,2.9356284E-5)

18 2 (2.820383E-6,-I.993386E-6)

18 4 (4.117441E-6,3.8602403E-5)

18 6 (2.055875E-6,1.0388953E-6)

18 8 (5.3973044E-6,5.2112973E-6)

18 i0 (6.546939E-6,-5.1009486E-4

18 12 (5.0371545E-6,1.2531445E-6

18 14 (7.5347065E-6,4.9646412E-5

18 16 (I.2029079E-6,7.8511675E-6

18 18 (4.5413707E-7,5.2472803E-4

1 (-7.0488726E-4,-4.1359872E-3)

3 (I.1044028E-3,9.498428E-3)

5 (-I.6145814E-3,-7.883782E-3)

7 (1.9769833E-3,0.015651448)

9 (-9.280766E-4,-2.6803847E-3)

II (6.842111E-4,5.6747663E-3)

13 (-6.516619E-4,-2.5269184E-3)

15 (-9.80073E-4,-3.3341408E-3)

17 (-I.5530751E-4,3.6133027E-3)

2 (-3.259895E-4,3.7869822E-4)

4 (I.0851541E-3,7.1884454E-3)

6 (4.3422586E-4,7.928428E-3)

8 (-6.5302517E-4,-2.8714612E-3)

I0 (8.852718E-4,9.267416E-3)

12 (-I.2921324E-5,1.349302E-3)

14 (-3.2737554E-4,5.139351E-4)

16 (-I.3548372E-3,-6.1254217E-3)

18 (2.0707286E-3,0.016081538).

Code for the hybrid MoM-PO technique was similarly developed. However, the hybrid

MoM-PO scheme simplifies for a planar geometry for the following reason. In the hybrid scheme,

the full, self-consistent solution is to be obtained through an iterative procedure. First, the currents in

the PO region can be taken to be zero (an initial guess), while the usual MoM solution applied to the

MoM zone. This yields the current distributions J1 over the MoM region by solving : L,[Jl(r)] +

L,[J2(r)] = - Einelt,n (r) , for r e MMZ, and J2(r) = 0. Next, this value of Jl is used to update

the current distribution in the PO region according to: J2(r) = 2 n^ x Hi*_(r) + Lh[Jl(r)] +

Lh[J2(r)] , for r e POSR, where n^ is the unit surface normal, and the operators Le[J(r)] and

Lh[J(r)] defined previously in eqn. (14). For planar structure, both J(r') and V' G(r,r') are in the

plane. Hence, J(r') x [V' G(r,r')] is perpendicular to the plane. Due to the "cross-product" with the

normal vector, a zero value results for Lh[J(r)] = 2 n ^ x J'fs' J(r') x [V' G(r,r')] dS'. Hence, only the
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2 n^ x Hin_(r) term appears in the PO region. Our simulations for simple 2D geometries did yield

this result, and hence, the hybrid scheme simplied, and did not require the use of an iterative

technique for convergence. The detailed numerical values are, therefore, not included in this report.

VIII. Results for the Two-Dimensional FDTD Scheme

The two-dimensional FDTD code developed was applied for time-dependent simulations of

scattering from biological cells. Since these cells function as dielectrics with finite conductivity, the

application becomes more general than the "perfect-conductor" scenarios. There is also some interest

in electromagnetic interactions with biological cells. Hence, some examples of light-scattering off

biological cells using the 2D FDTD code were used & are presented here.

As is well known, Mie theory has the two following fundamental limitations. (i) The incident

energy has to be in the form of a plane wave. This has recently been circumvented by the

development of a generalized Lorenz-Mie theory [44] that allows for the interaction between spheres

and arbitrary incident beams. (ii) A spherical geometry and homogeneity of the scatter. While recent

techniques have been developed to treat multi-layered spheres [45,46], the angular symmetry remains

a constraint. The FDTD approach used here circumvents such restrictions, and allows for the

inclusion of a heterogeneous structure, arbitrary shapes, and complex, non-concentric dielectric

distributions. Having validated the FDTD method with Mie theory for the simple, homogeneous,

Cytoplasm
Nucleoplasm

fluid

Fig. 6. Simple representation of cell parts with different index of refraction.
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sphericalcase,resultsof thescatteringpatternsare now presented for the more realistic and complex

cellular shapes.

Different parts of a biological cell have different index of refraction as shown schematically in

Fig. 6. Hence, cellular scattering patterns can potentially reveal various geometries of sub-cellular

structures, their relative size and physical location relative to the center. For example, the angular

scattering patterns can be obtained by changing the orientation of the incident optical light. If these

were to be compared to the theoretical predictions for various shapes and sizes on the internal sub-

structure, then the geometry, and size could be inferred. Similarly, changes in morphology (for

example between healthy and malignant cells, or upon electromagnetic pulse exposure) can similarly

be obtained. Some experimental work, in this regard, already exists. For example, Mourant et al.

[47] showed that organelles smaller in size than the nucleus were responsible for significant

scattering contributions. Measurements also indicate that the nucleus is responsible for low-angle

scattering, while smaller organelles produced high-angle scattering.

FDTD R . = 0.525 micrometer,Rnucteu a = 0.263micrometer,lambda = 0.6328 micrometer
100" ce=_,_._

"_ I -- cell without nucleus

I .... cell with nucleus
10-_ -- only nucleus

_. 10-2

f_

g
._ 10 "3
.m

0_
¢,..

ii)

104
6o

10"'_

10"_ I l t t i = = , =
0 20 40 60 80 100 120 140 160 180

Angle (degrees)

Fig.7. Cellular scattering patterns of cell with nucleus and without nucleus.
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Fig. 7 shows FDTD results of the cellular scattering patterns for cell with nucleus and without

a nucleus for an incident wavelength of 0.6328 IJm, which correspond to a He-Ne laser source. In

keeping with published reports [39], the refractive index of the nucleus and cellular cytoplasm were

set to 1.39 and 1.37, respectively. The extra-cellular fluid was taken to be 1.35 [38]. The cell radius

was 0.525 IJm, while the nuclear radius was 0.263 tJm. The patterns show that the nucleus brings

about much more change at low angles than at higher angles. This is because the existence of a

nucleus changes the forward scattering more significantly than backscattering. This prediction is in

keeping with the experimental observations of Mourant et al. [47]. Cells with mitochondria were

also simulated. The scattering patterns obtained, for cells of radius 0.525 _Jm are shown in Fig. 8.

Both of the two cells had identical nucleii. As apparent from the curves of Fig. 8, the existence of

mitochondria is predicted to lead to stronger backscattered intensity. Also, the scattering pattern is

seen to change only at the higher angles. This trend also agrees well with measured data [47]

suggesting the organelles can significantly change the higher-angle patterns. Thus, any

morphological changes or electromagnetic field impact on the organelles (as in intra-cellular

electroporation ), is likely to be diagnosed through such optical scattering.

FDTD,RceIt = 0525 micrometer.lambda = 0.6328 micrometer
o

10 without mitochondria I

I ...... with mitochondria ]
10-_

S"

._= 10_

10"4 j"

_,

o_ 10--_

10_

10"7 , J t I I J I n I
0 20 40 60 80 100 120 140 160 180

Angle (degrees)

Fig. 8. Scattering patterns of cell with nucleus, with and without mitochondria.
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All models used in literature implicitly assume that the nucleus is located at the center of a cell, and

that its shape is spherical [48,49]. However, this is a simplification, and in reality, the nucleus can

have a number of different shapes and can be located anywhere inside a biological cell. The size,

position and shape can all have an effect on the scattering patterns as demonstrated through the

FDTD simulations. The results shown in Fig. 9 reveal the scattering patterns of cells with different

nuclear sizes for a fixed outer cell size. The outer cell radius was again set at 0.525 IJrn,while the Ne-

He laser characteristic wavelength of 0.6328 IJm was used. With increasing size of the nucleus, the

scattering intensity is predicted to increase as may be expected. Furthermore, the change in the

scattering pattern is most pronounced at larger-angles. Hence, the backscattering configuration

would be most sensitive for detecting such information. It is also apparent that as the size of the

nucleus gets progressively smaller, there would not be much change in the scattering pattern and so

the sensitivity would reduce. Hence, a size threshold is probably inherent from practical detector

considerations. Furthermore, if sizes of the nucleus were the same, but a nucleus was located at

different positions inside the cell, then again differences in the scattering pattern are predicted. This

100

10 "_

_. 10.2

•_ 10"

== 10"4

10"_

10_

FDTD.Rce, = 0525 micrometer.lambda = 0.6328 micrometer

_z'_-_,, ....

I I I I I 1 I I I

20 40 60 80 100 120 140 160 180

Angle (degrees)

Fig. 9. Cellular scattering patterns of cells with different sizes of nucleus.
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isshownthroughtheresultsof Fig. 10. Two situationshavebeenconsidered:onein whichnuclei

arepositionedat the sameradial distancefrom the centerof the cell. However,their angular

orientationrelativeto the incomingwave is different. A secondsituationis that of an identical

nucleuspositionedatthecell center.As seenfrom theresultsof Fig. 10,thescatteringpatternsfor

theformersituationdonotchangesignificantly,andareall closetoeachother.However,theyareall

quitedifferentfromthatfor thecenter-locatednuclearcell, andalsohaveslightlyhigherintensities.

The absence of sharp minima in the scattering pattern could, for example, be indicative of nuclei that

were off-center in biological cells. Another case considered here is that of a nucleus located at

different distances from the center of the cell. The results are shown in Fig. 11 with the relative

orientation with respect to the incident wave being fixed. The scattering patterns once again reveals

that changes are most likely to occur at higher angles (i.e., backscattering geometry). It is also

apparent that the scattering pattern is affected by the relative distance of the nucleus from the center,

but not, the absolute location.

10°

10

._. 10.2

10.3

-_=

10"4

c_ 10"

10-_

Nucleus at differentposilion inside the cell

10 -7 I I I I I I

0 20 40 60 80 100 t20 140 160 180

Angle (degrees)

Fig. 10. Scattering patterns of cells with nucleus at the same distance from the centers of the cells.
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IX. Results for the Three-Dimensional ADI-FDTD Scheme

A three-dimensional (3D) ADI-FDTD simulation scheme was developed and implemented.

The primary advantages of such an ADI-TDFD technique can be summarized as follows:

(i)

(ii)

(iii)

(iv)

10o

10

___102

N 104
¢-

lO"

t.) __.

_ 10"

10"e

It allows for both a complete time-domain analysis and the steady-state result. The latter

can result by running the simulations up to longer times. The transient behavior cannot

be obtained from the Moment Method or PO-MoM schemes.

The ADI-FDTD allows for any arbitrary geometry including sharp corners and complex

features.

It is significantly faster than the FDTD scheme since very large time steps can be used

without the need to be restricted to the CFL condition.

High frequency analysis for which the spatial discretization has to be small, can be carried

Nucleus at differentpositioninside the cell

10.7
0 20 40 60 80 100 120 140 160 180

Angle (degrees)

Fig. 11. Scattering patterns of cells with nucleus at different distances from the centers of cells.
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(v)

(vi)

out relatively easily as the time-step can remain large. Similarly, the technique is of

advantage for large objects for which many grid points may be required.

Non-uniform, multi-grids can be employed for better resolution. Also, absorbing

boundary conditions can be implemented for accurate analyses.

Finally, dielectrics or perfect conductors or both can be studied with ADI-FDTD.

The first set of results that are given below, emphasize the significant increase in time step that can be

achieved through the ADI-FDTD scheme as compared to the traditional FDTD method. A simple

electric field pulse was taken for simplicity. The traditional FDTD required a time step of about

2.476 x 10 "17 S. Fig. 12a shows the electric field waveform of an assumed source (single pulse), and

also the time-dependent E-field at an observation point slightly "downstream". The time step was

chosen to equal the normal CFL (CFLN) value, and hence, was very small. Fig. 12(b) shows the

numerical results of the E-field as a function of time, but with a time step chosen to be 1000 times

larger. The source E-field pulse was correspondingly chosen to be 1000 times longer. In Fig. 12(b),

the E-field at the downstream point and the source waveform almost coincide since the time delay is
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Fig. 12a. Source E-field pulse and E-field at an observation point downstream obtained from an

ADI-FDTD solution. The time step was chosen to equal the CFL condition.
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Fig. 12b. Source E-field pulse and E-field at an observation point downstream obtained from an

ADI-FDTD solution. The time step was chosen to equal 1000 times the CFL condition.

very small compared on this new time-scale. The significant point, though, is that the field at the

observation retains the same shape and does not cause any numerical instability despite the larger

time step. Finally, a time step significantly larger (106 times) the CFL requirement was used to check

for the numerical stability of the ADI-FDTD code. The time-dependent electric fields of the source

pulse (correspondingly taken to be 106 times larger), and at the observation point are shown in Fig.

12(c). Due to the large times, the delay between the E-fields of the source and at the observation

point again cannot be discerned in the figure. However, both values were calculated and match the

expected trend without any instability. This, conclusively demonstrates the successful

implementation of an ADI-FDTD technique that can use time steps up to 106 times the CFL condition

of traditional FDTD.

A second example is now presented and discussed with the aim of demonstrating a successful

comparison between ADI-FDTD and traditional FDTD. However, in this case absorbing boundary

conditions are implemented through a perfectly matched layer proposed by Berenger [30]. A source

from an incident plane is used and a thin dielectric wall placed between the source plane and the
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Fig. 12c. Source E-field pulse and E-field at an observation point downstream obtained from an

ADI-FDTD solution. The time step was chosen to equal 106 times the CFL condition.
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\
Incident plane

PML ABC

Fig. 13a. Geometry of a planar E-field source and an observation point separated by a thin dielectric.
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observation point as shown in Fig. 13(a). For an incident sine wave, the electric field at the

observation pointas obtained by the ADI-FDTD method in the absence of a dielectric wall is shown

in Fig. 13(b). Due to the finite separation, there is a time lag between the two curves. Fig. 13(c)

shows the E-field output at the observation point with ADI-FDTD and the traditional FDTD

techniques. The time step for the ADI technique was 8 times larger. Though larger time steps could

have been chosen from a stability standpoint, it would then not have been possible to plot the values

over the 3.5 x 10 l° s range of the graph. The close match between ADI-FDTD and the conventional

FDTD is brought out clearly in Fig. 13(c).

The use of multi-grid meshes for solving ADI-FDTD problems is brought out through a final

example. Shown in Fig. 14 is the geometry under consideration. It consists of an incident source

plane, a surrounding PML region for absorbing boundary conditions, four observation points, and an

embedded cube of water with a finite conductivity (to facilitate absorption) and a dielectric constant.

The water cube was assumed to have a dielectric constant of 1.69, with a conductivity of 0.03 s/m.

This cube was taken to have a material coating of conductivity 4.0 s/m and dielectric constant of 4.0.
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Fig. 13(b) Incident sine wave and the wave at the observation point without the dielectric wall.
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Wavelength X = 0.63281am. Cell size = 10.5"10.5"10.5 nm.
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Fig. 13(c). Output wave at observation point calculated by conventional FDTD and ADI -FDTD.

Time step for the conventional FDTD was 2.022 × 1012s and that for ADI-FDTD was 1.618 × 101 _s.

Observation Pt.

Z

,,,,,-'3- ..... _......... -,;
li_/S
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, I.I1 .1 ,' IIII
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Fig 14. (a) A water cube (o = 0.03s/m, er = 1.69) coated with material (o = 4.0s/m, er = 4.0)

(b) Multi-sized grid in FDTD calculation.
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The grid size was assigned as follows: Ax(i) = 1.05×107m (in region I) ; Ax(i-1) x0.5 (In region

II); lxl0 8 m (in region III) ; Ax(i-1) x2.0 (in region IV) ; and - 1.05×107m (in region V). The

spacings Ay(i) and Az(i) are defined in the same ways as Ax(i). Fig. 15(a) shows the output

waveform at observation point 2, and compares the results of FDTD and ADI-FDTD. The time steps

were 0.02022 fs and 2.022 fs, respectively. CPU times of 2985 s and 257 s were required for the

FDTD and ADI-FDTD schemes, respectively. The savings with the ADI technique are clear. The

output at observation points 1 and 2 are given in Fig. 15(b).

X. Summary and Potential Future Work :

A study into the problem of determining electromagnetic solutions at high frequencies for

problems involving complex geometries, large sizes and multiple sources (e.g. antennas) has been

initiated. Typical applications include the behavior of antennas (and radiators) installed on complex

conducting structures (e.g. ships, aircrafts, etc..) with strong interactions between antennas, the

radiation patterns, and electromagnetic signals is of great interest for electromagnetic compatibility

10 4_

6
E

4
-o

LL

2

'r-

III

-2

-4

-6

-8

4_

_- Convent onal FDTD

I | I I I I I

0.5 1 1.5 2 2.5 3 3.5
-10

0 4

Time (s) x 10 14

Fig. 15(a). Output waveform at the close observation point. CPU times: 257 s for ADI-FDTD, and

2985 s for conventional FDTD.
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Fig. 15(b). Output at close observation point and far observation points 1 and 2.

control. This includes the overall performance evaluation and control of all on-board radiating

systems, electromagnetic interference, and personnel radiation hazards.

Electromagnetic computational capability exists at NASA LaRC, and many of the codes

developed are based on the Moment Method (MM). However, the MM is computationally intensive,

and this places a limit on the size of objects and structures that can be modeled. Here, two approaches

are proposed: (i) a current-based hybrid scheme that combines the MM with Physical optics, and (ii)

an Alternating Direction Implicit-Finite Difference Time Domain (ADI-FDTD) method. The essence

of a hybrid technique is to split the overall scattering surface(s) into two regions: (i) a MM zone

(MMZ) which can be used over any part of the given geometry, but is most essential over irregular

and "non-smooth" geometries, and (ii) a PO sub-region (POSR). Currents induced on the scattering

and reflecting surfaces can then be computed in two ways depending on whether the region belonged

to the MMZ or was part of the POSR. For the MMZ, the current calculations proceed in terms of

basis functions with undetermined coefficients (as in the usual MM method), and the answer obtained

by solving a system of linear equations. Over the POSR, conduction is obtained as a superposition of
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two contributions: (i) currents due to the incident magnetic field, and (ii) currents produced by the

mutual induction from conduction within the MMZ. This could effectively lead to a reduction in the

size of linear equations from N to N - Npo with N being the total number of segments for the entire

surface and Npo the number of segments over the POSR. The scheme would be appropriate for

relatively large, flat surfaces, and at high frequencies.

The ADI-FDTD scheme is relatively new in the literature and was first proposed capable in

2000. It is capable of providing both transient and steady-state analyses. The primary advantage of

this scheme is that large time-steps can be chosen without instability or inaccuracy, even though the

spatial resolution is very small. Thus, computational speed enhancements of an order or more

become possible. Hence, the ADI-FDTD method can be applied to problems involving large

geometry, low wavelengths (i.e. high frequencies), and complex material characteristics such as

composites and dielectric coatings.

This report includes the problem definition, a detailed discussion of both the numerical

techniques, and numerical implementations for simple surface geometries. Numerical solutions have

been derived for a few simple situations. The advantage of the ADI-FDTD scheme has been

demonstrated. Future work in this area might include:

(i)

(ii)

(iii)

(iv)

Direct comparison of numerical results from the present MM-code at NASA LaRC with ADI-

FDTD results for simple geometries.

Calculations for complex geometries and/or composite material properties including dielectric

coatings.

Expansion of the ODU codes to include wires, wire-surface and wire-wire interfaces.

Use of the codes in the choice of materials and design for electromagnetic applications.
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